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 SIAM J. NUMER. ANAL.

 Vol. 13, No. 2, April 1976

 AN ALGORITHM FOR REDUCING THE
 BANDWIDTH AND PROFILE OF A SPARSE MATRIX*

 NORMAN E. GIBBS, WILLIAM G. POOLE, JR. AND PAUL K. STOCKMEYERt

 Abstract. A new algorithm for reducing the bandwidth and profile of a sparse matrix is described.

 Extensive testing on finite element matrices indicates that the algorithm typically produces bandwidth

 and profile which are comparable to those of the commonly-used reverse Cuthill-McKee algorithm,

 yet requires significantly less computation time.

 1. Introduction. Let

 (1.1) Ax=b

 be an n x n sparse nonsingular system of linear algebraic equations. We are
 concerned with the band and profile schemes of storage and decomposition for the
 solution of (1.1). A matrix is banded if all of the nonzero elements are clustered
 near the main diagonal. The bandwidth, ,B, of the matrix A is defined by

 (1.2) 3 = max li -jl.
 a,j 511 ()

 To define the profile of A, first define fi = min {j: a1j ? 0} for i = 1, 2, .. ., n (it is
 assumed that aii ? 0). This locates the leftmost nonzero element in each row. Now
 define 8i = i - fi. The profile is defined to be Z S1 6i. In this paper, a new algorithm
 is presented which permutes A into PAP ,1 which has a smaller bandwidth and
 profile than does A. Of course, reducing bandwidth and reducing profile are not
 equivalent although there is considerable correlation between the two ideas and
 the new algorithm is designed to reduce both. The algorithm can be applied to

 matrices with symmetric zero-nonzero structure, i.e., aij ? 0 if and only if aji ? 0.
 Many bandwidth and profile reduction algorithms have been proposed [2],

 [1], [22], [9], [17], [16], [3], [14], [20], [7], [26], [6] although the reverse
 Cuthill-McKee algorithm, a modification by George [13] of the algorithm
 developed by Cuthill and McKee [9], is perhaps most commonly used. This paper
 presents an algorithm for reducing bandwidth and profile which appears to be
 superior to the reverse Cuthill-McKee algorithm. Test results (in ? 6) indicate that
 the new algorithm yields bandwidth and profile which are comparable to those of
 the reverse Cuthill-McKee algorithm, yet is many times faster.

 In ? 2 the basic concepts of graph theory that are needed later are discussed,
 ? 3 contains a description of the reverse Cuthill-McKee algorithm and ? 4
 describes the new algorithm. Section 5 illustrates the application of both
 algorithms to an example. Section 6 contains the test results of the two algorithms
 applied to several finite element matrices arising from structural engineering
 problems.

 * Received by the editors July 15, 1974, and in final revised form June 5, 1975. This paper was
 prepared as a result of work performed under Office of Naval Research Contract N00014-73-A-
 0374-0001, NR044-459, and in part under NASA Grant NGR 47-102-001 while the second author
 was in residence at the Institute for Computer Applications in Science and Engineering, NASA

 Langley Research Center, Hampton, Virginia.

 t Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23185.
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 REDUCING BANDWIDTH AND PROFILE 237

 2. Basic concepts from graph theory. Considerable insight often can be
 gained by using a graph representation of sparse matrices [5], [9], [21]. Of
 significance to this paper is the fact that permuting the rows and columns of a
 matrix corresponds to renumbering the vertices of a graph.

 If V is a finite nonempty set and E c {{a, b}: a ? b and a, b E V} is a collection

 of unordered pairs of elements of V, then G = (V, E) is a finite undirected graph
 without loops or multiple edges, or more simply, a graph. Given a matrix A = (ai),
 we can define a graph G = ( V, E) where V has n vertices, {vI, v2, .- ., vn}, and
 {vi, vj} E E if aij ?0 and i ? j. The elements of V = V(G) and E = E(G) are called
 vertices and edges, respectively. If {v1, v2} e E, then vI and v2 are said to be
 adjacent. The degree of a vertex is the number of vertices adjacent to it.

 A path of length t is a sequence of edges {vo, v}, {VI, V2}, .. . 5 {V-1, vt} such
 that vi = vj implies i = j. A graph G is connected if there is a path connecting each
 pair of vertices. If G is not connected, then it consists of two or more connected
 components, or maximal connected subgraphs. The distance between vertices v1
 and V2 of a connected graph is the length of a shortest path from one to the other.
 A diameter of G is a shortest path connecting two vertices of maximal distance
 apart. The term diameter will also be used for the length of such a path.

 In a more specialized vein, if G has n vertices, then a one-to-one map, f, from
 V(G) onto the set {1, 2,. . ., n} is called a numbering of G. For each numbering f,
 we define 6f3(G), the bandwidth of G relative to f, by

 (2.1) ,Bf(G) = max {If(v -f(V2)1I {VI, v2}e E(G)}.

 The minimum of 13f(G) over all numberings of G is called the bandwidth of G and
 denoted by /3(G).

 An important concept in many bandwidth and profile reduction algorithms is
 that of level structure [3]. A level structure, L(G), of a graph G is a partition of the

 set V(G) into levels LI, L2, .. . , Lk such that
 1. all vertices adjacent to vertices in level L1 are in either level L1 or L2,
 2. all vertices adjacent to vertices in level Lk are in either level Lk or Lkl,

 and

 3. for 1 < i < k, all vertices adjacent to vertices in level Li are in either level
 Li-,, Li, or Li+,.

 To each vertex v e V(G) there corresponds a particular level structure Lv (G)
 called the level structure rooted at v. Its levels are determined by

 1. L1={v}, and

 2. for i > 1, Li is the set of all those vertices adjacent to vertices of level Li_
 not yet assigned to a level.

 In any level structure L(G), rooted or not, wi(L) = ILi I (the cardinality of the
 set Li) is called the width of level i, and w(L) = max {wi} is the width of the level
 structure L(G). It is easily observed (see [9]) that for any level structure, L, a
 numbering fL of G that assigns consecutive integers level by level, first to the

 vertices of level LI, then to those of L2, and so forth, yields a bandwidth, 13fL,
 satisfying

 (2.2) 13fL? 2w(L)- 1.
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 238 NORMAN E. GIBBS, WILLIAM G. POOLE, JR. AND PAUL K. STOCKMEYER

 If in addition the level structure L is rooted, then we also have

 (2.3) f3fL?w(L).

 The depth of a level structure is k, the number of levels.

 3. The reverse Cuthill-McKee algorithm. The bandwidth and profile reduc-
 tion algorithm most widely used today is the reverse Cuthill-McKee algorithm. In

 order to provide a basis of comparison with the new algorithm of ? 4, we now

 describe the reverse Cuthill-McKee algorithm in some detail. For both algorithms
 it is assumed that the graph is connected. If not, the connected components are
 determined and the algorithms applied to each component separately.

 A. Generate the level structure rooted at each vertex of low degree, and
 compute its width. Normally, low degree here means less than or equal to

 max {min {(dmax + dmin)/2, dmedian - 1}, dmin}, although this can be con-
 trolled somewhat by parameters (see [10]).

 B. For each rooted level structure of minimal width generated in step A,
 number the graph level by level with consecutive positive integers
 according to the following procedure:

 1. The root vertex is assigned the number 1. (If this is not the first
 component of the original graph the root vertex is assigned the
 smallest unassigned positive integer.)

 2. For each successive level, beginning with level 2, first number the
 vertices adjacent to the lowest numbered vertex of the preceding
 level, in order of increasing degree. Ties are broken arbitrarily. The
 remaining vertices adjacent to the next lowest numbered vertex of the
 preceding level are numbered next, again in order of increasing

 degree. Continue the process until all vertices of the current level are
 numbered, then begin again on the next level. The procedure termi-

 nates when the vertices of all levels have been numbered.

 C. For each numbering f produced in step B.2, compute the corresponding
 bandwidth ,3f(G). Select the numbering which produces the smallest
 bandwidth.

 D. The numbering is reversed by setting i to n - i + 1, for i = 1, 2,..., n.
 Step D was first suggested by George [ 13] after he observed that profile could

 frequently be further reduced by numbering the vertices in decreasing order from

 n to 1 rather than increasing from 1 to n. Recently it was proved that this
 modification can never increase the profile [24], and of course it has no effect on
 bandwidth.

 This algorithm has several shortcomings. The first is that the algorithm is
 inefficient because of the time consumed performing an exhaustive search to find
 rooted level structures of minimal width. In the case that all vertices have the same

 degree, a level structure must be generated from every vertex of the graph. A
 second problem is that the graph is renumbered, and the corresponding band-
 width recomputed, for every level structure found of minimal width. A third
 problem is that the bandwidth obtained by a Cuthill-McKee numbering can never

 be less than the width of the rooted level structure used (see (2.3)), although the
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 REDUCING BANDWIDTH AND PROFILE 239

 (minimum) bandwidth of a graph can be considerably less than the width of any
 rooted level structure. This is illustrated by the example in ? 5.

 In the next section we address the above three problems and present an
 alternative algorithm. The first two shortcomings are overcome by carefully
 selecting a starting vertex after generating only a relatively small number of level
 structures. The graph is renumbered, and corresponding bandwidth and profile
 computed, only once. The third problem is resolved by utilizing a more general
 type of level structure.

 4. A new bandwidth and profile reduction algorithm. The description of the
 new algorithm is divided into three parts, each part addressing one of the three
 problems mentioned in the previous section. The new bandwidth and profile
 reduction algorithm is simply a combination of Algorithms I and II and III which
 follow.

 4.1. Finding a starting vertex. In our work we have found that level struc-
 tures of small width are usually among those of maximal depth. Clearly, increasing
 the number of levels always decreases the average number of vertices in each
 level, and tends to reduce the width of the level structure as well. Ideally, then, one
 would like to generate level structures rooted at endpoints of a diameter. Since
 there is no known efficient procedure that always finds such vertices, we employ
 the following algorithm to find the endpoints of a pseudo-diameter, that is, a pair
 of vertices that are at nearly maximal distance apart. For a large class of graphs,
 including all trees and all of the 19 test graphs arising from the problems discussed
 in ? 6, the pseudo-diameter produced is actually a real diameter.

 ALGORITHM I. Finding endpoints of a pseudo-diameter.
 A. Pick an arbitrary vertex of minimal degree and call it v.
 B. Generate a level structure Lv rooted at vertex v. Let S be the set of

 vertices which are in the last level of Lv (i.e., those vertices which are farthest away
 from v).

 C. Generate level structures rooted at vertices s E S selected in order of
 increasing degree. If for some s E S the depth of L, is greater than the depth of Lv,
 then set v e- s and return to step B.

 D. Let u be the vertex of S whose associated level structure has smallest
 width, with ties broken arbitrarily. The algorithm terminates with u and v the
 endpoints of a pseudo-diameter.

 Although the number of iterations required to find a pseudo-diameter
 depends on arbitrary choices, none of the nineteen test problems required more
 than two.

 4.2. Minimizing level width. In the process of finding a pseudo-diameter,
 Algorithm I constructs level structures Lu and Lv rooted at the endpoints u and v,
 respectively. It is possible to combine these two level structures into a new level
 structure whose width is usually less than that of either of the original ones, using
 the following algorithm.

 ALGORITHM II. Minimizing level width.

 A. Using the rooted level structures Lv = {LI, L2,.. ., Lk} and Lu
 - {Ml, M2, . . , Mk} obtained from Algorithm I, associate with each vertex w of
 G the ordered pair (i, j), called the associated level pair, where i is the index of the
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 level in Lv that contains w, and k + 1-j is the index of the level in Lu that contains
 w. Thus the pair (i, j) is associated with a vertex w if and only if w E Li n Mk+1j.
 Note that the pair (1, 1) is associated with the vertex v, while the pair (k, k) is
 associated with u.

 B. Assign the vertices of G to levels in a new level structure L

 =={N,, N2, . . . , Nk} as follows:
 1. If the associated level pair of a vertex w is of the form (i, i) then vertex w is

 placed in Ni. The vertex w and all edges incident to w are removed from
 the graph. If V(G) = 0, stop.

 2. The graph G now consists of a set of one or more disjoint connected

 components C1, C2, . . ., C, ordered so that /V(C1) IIV(C2)1_ *
 = I V(Ct)I-

 3. For each connected component Ci, i = 1, 2,.. ., t, do the following:

 (a) Compute the vector (nl, n2, . . ., nk) where ni = INiI.
 (b) Compute the vectors (hl, h2, . .. , hk) and (11, 12,..., ik) where hi

 = ni + (the number of vertices which would be placed in Ni if the first
 element of the associated level pairs were used) and 1i = ni +(the
 number of vertices which would be placed in Ni if the second element
 of the associated level pairs were used).

 (c) Find h0, = maxi {hi : hi - ni > 0} and 10 = maxi {li : li - ni > 0}.
 (i) If ho < lo, place all the vertices of the connected component in the

 levels indicated by the first elements of the associated level pairs.

 (ii) If 1) < ho, use the second elements of the level pairs to place the
 vertices in the levels.

 (iii) If ho = lo, then use the elements of the level pairs which arise from
 the rotted level structure of smaller width. If the widths are equal,
 use the first elements.

 The algorithm terminates when each vertex of G has been assigned a level in the

 level structure L.

 4.3. Numbering. The numbering procedure is similar to that of the reverse
 Cuthill-McKee algorithm in that it assigns consecutive positive integers to the
 vertices of G level by level. A few modifications were necessary, however, since
 the level structures obtained by Algorithm II are of a more general type than the
 rooted ones used in the reverse Cuthill-McKee algorithm. When the resulting
 numbering is similar to that obtained by the (forward) Cuthill-McKee algorithm,
 profile can be further reduced by using the reverse numbering described in step D
 below.

 ALGORITHM III. Numbering.
 A. If the degree of u is less than the degree of v, then interchange u and v and

 reverse the level structure obtained in Algorithm II by setting Ni to Nk-i+. (This
 insures that the numbering starts from the endpoint of lower degree.)

 B. Assign consecutive positive integers to the vertices of level N1 in the
 following order:

 1. Assign the number 1 to the vertex v (if this is not the first component of the

 original graph, then assign the smallest unassigned positive integer to v).
 2. Let w be the lowest numbered vertex of level N1 which has unnumbered

 vertices in N1 adjacent to it. Number the vertices of N1 adjacent to w, in
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 REDUCING BANDWIDTH AND PROFILE 241

 order of increasing degree. Repeat this step until all vertices of N1
 adjacent to numbered vertices are themselves numbered.

 3. If any unnumbered vertices remain in level NI, number the one of minimal
 degree, then go to step B.2. Otherwise proceed to step C.

 C. Number the vertices of level Ni, i = 2, 3, . . ., k, as follows:
 1. Let w be the lowest numbered vertex of level Ni-1 that has unnumbered

 vertices of level Ni adjacent to it. Number the vertices of Ni adjacent to w
 in order of increasing degree. Repeat this step until all vertices of level N

 adjacent to vertices of level Ni-I are numbered.
 2. Repeat steps B.2 and B.3, replacing 1 with i.

 D. The numbering is reversed by setting i to n - i + 1, for i = 1, 2, . . . , n if
 either of the two following conditions holds:

 1. Step A interchanged vertices u and v and Algorithm II selected the

 second elements of the level pairs for component C,.
 2. Step A did not interchange vertices u and v and Algorithm II selected the

 first elements of the level pairs for component C,.

 5. An example. In this section we demonstrate the application of the two

 algorithms of ? 3 and 4 by an example.
 Let

 x x x x x x x x x

 x x x x x x

 x x x x xx

 x x x x xx

 x x x x x x

 x x x x x x

 x x x x x x x x x

 x x x x x x x x x

 x x x x

 x x x x x x x x x

 x x x,x x x

 (5.1) A= x x x x x x

 x x x x x x

 x x x x x x

 x x x x x x

 x x x x x x

 x x x x

 x x x x x x x x x

 x x x x x x x x x

 x x x x x x x x x

 x x x x x x

 x x x x x x x x x

 x x x x

 x x x x_
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 where x denotes the location of the nonzero elements. The associated numbered
 graph is

 (5.2)

 Whenever the vertices are represented by circles, the integers contained in the
 circles refer to the appropriate numbering of the vertices. Whenever the vertices
 are represented by rectangles, the integers contained in the rectangles refer to the
 appropriate levels generated by the algorithms. Because dm,dian= 5 and
 (dmax + dmin)/2 = 5.5, the Cuthill-McKee algorithm generates level structures
 rooted at the four vertices numbered 9, 17, 23 and 24. For vertex 9, the following
 structure is obtained:

 (5.3)

 The other three level structures have a similar form. Using level structure (5.3), we
 obtain the reverse numbering

 (5.4)
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 REDUCING BANDWIDTH AND PROFILE 243

 The level width and the bandwidth are both 7 for all four level structures and the
 resulting matrix is

 xx xx

 xxx xxx

 x x x x x x

 xx xx

 x x x x x x

 x x x x xx x x x

 x x x x xx x x x

 x x x x x x

 x x x x x x

 x x x x xx x x x

 x x x x xx x x x

 (5.5) xx x x x x

 x x x x x x

 x x x x x x

 xx xx

 x x x x x x x x x

 x x x x xxx x x

 x x x x x x

 x x x x x x xx x

 x x x xx x

 x x x x x x xx x

 x x x xx x

 x x x x x x

 x xx x

 whose profile is 97.

 The algorithm of ? 4 applied to the graph of (5.2) will also choose vertex 9 as a
 starting vertex, generating the same level structure as in (5.3). However this
 algorithm now differs from reverse Cuthill-McKee by noticing that the level
 structure rooted at vertex 3 gives a smaller level width of 6. We now have two level

 structures, one rooted at vertex v = 9 and one at u = 3. The associated level pairs
 are

 (5.6)
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 Algorithm II now assigns vertices with level pair (i, i) to level N,. The disjoint
 connected components are

 I C2 ,

 (5.7) 1S

 For components C1, (n,, n2, . .. , n6) = (1, 2, 3, 4, 3, 1), (hl, h2, ... ., h6)

 -(1,3,5,7,3, 1) and (11, 12,.- .., 16)=(4, 4,4,4,3,1). It follows that ho=7 and
 1l = 4, and thus we use the second elements in the level pairs, yielding the partially
 completed level assignments

 (5.8)

 After assigning levels to vertices in components C2 and C3 we get the following
 level structure:

 (5.9)
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 The numbering of the vertices yields the graph

 (5.10)

 and the matrix

 x x x x

 x x x x x x

 xx x x x x

 xx xx

 xx xx xx

 x x x x xx x x x

 xx xx x xx x x x

 x x x x x x

 xx xx xx

 x x x x x x x x x

 x x x x xx x x x

 x x x x x x

 x x x x x x

 (5.11) xxx xxx xx x

 x x x x x x x x x

 xx xx xx

 xx xx xx

 x x x x x x x x x

 x x x x x x x x x

 xx xx xx

 xx xx

 xxx xxx

 x x x x x x

 xx xx

 which has bandwidth 5. It is well known that this cannot be further reduced. The
 profile produced by this algorithm is 98.
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 6. Description of test results. Every bandwidth or profile reduction
 algorithm currently in use is heuristic in the sense that one cannot make absolute a

 priori statements concerning the performance of the algorithm-the performance

 is data dependent. The standard way to evaluate such an algorithm is to test it on

 several examples-in some sense "typical", if possible-and compare the results
 with other algorithms or some "standard" algorithm. We have chosen this method

 in order to evaluate our algorithm.

 For our test matrices we have chosen 19 sparse matrices which were

 accumulated over a period of several years by E. H. Cuthill and G. C. Everstine of
 the Naval Ship Research and Development Center (NSRDC). Several of these
 appear in [11]. These matrices arise in the solution of various differential
 equations and variational problems in structural engineering when the finite
 element method is used. One- and two-dimensional elements (triangles and
 quadrilaterals) were used. The problems include such diverse applications as
 aircraft structures, liquid nitrogen gas tanks, propeller blades and submarines.

 For our "standard" algorithm we have chosen the reverse Cuthill-McKee

 algorithm of ? 3. This is probably the most commonly used bandwidth and profile
 reduction algorithm [11, p. 47], [8], [13, p. 101] and is included in several struc-
 tural engineering software packages [11, p. 47]. The particular implementation is
 a FORTRAN IV program which was given to us by E. H. Cuthill and G. C. Everstine

 of NSRDC. The algorithm described in ? 4 has been implemented by the authors,
 also in FORTRAN IV. Tests on the 19 matrices were run on the IBM 360 model 50
 computer at the College of William and Mary. The interval timer was used in
 order to minimize the side effects of operating in a multiprogramming environ-
 ment. It is felt that the comparative times of the two programs fairly represent
 their performances.

 Table 1 presents the results of the tests. Figures 1, 2 and 3 graphically display
 the test results with respect to bandwidth, profile and execution time, respectively.
 The results indicate that the new algorithm typically gave a bandwidth compara-

 ble to that of the reverse Cuthill-McKee algorithm. The new algorithm actually
 gave a slightly smaller bandwidth on average primarily because of examples 17
 and 18. Furthermore the profiles produced by the new algorithm were usually
 slightly smaller than the profiles obtained using the reverse Cuthill-McKee
 algorithm.

 7. Conclusions. We feel that the new algorithm is a viable choice when one is
 selecting a bandwidth or profile reduction algorithm. This conclusion is based on
 our experience with using both it and the reverse Cuthill-McKee algorithm on the
 abovementioned 19 examples and many other test cases. The bandwidth and
 profiles produced by the new algorithm are comparable and the new algorithm
 requires significantly less execution time. Also our FORTRAN program required
 no more storage than did the NSRDC implementation of the Cuthill-McKee
 algorithm [10].

 As stated in ? 3, there are primarily three reasons for explaining why the new
 algorithm is an improvement over the reverse Cuthill-McKee algorithm. Because
 of the method for finding a pseudo-diameter, relatively few vertices must be

 examined as potential starting vertices for the numbering. For the test problems of
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 TABLE 1

 Test results

 Case N PC On P Pc

 1 68 45 5 7 598 236

 2 90 85 9 7 1,020 575

 3 92 80 14 13 2,127 739

 4 130 126 19 18 3,615 1,562

 5 159 19 11 12 1,046 983

 6 174 16 14 13 1,569 1,615
 7 185 168 30 29 7,534 3,664

 8 220 166 13 12 8,532 1,809

 9 263 262 19 19 2,681 2,337

 10 263 30 13 14 2,040 2,023

 11 310 302 14 14 23,357 2,725

 12 312 262 33 37 18,076 5,812

 13 346 216 43 46 16,435 7,180

 14 360 344 33 34 29,790 6,001

 15 436 173 34 33 7,913 8,181
 16 512 399 28 29 35,837 4,838

 17 555 480 110 91 56,322 29,904

 18 861 833 79 71 100,560 45,961

 19 918 840 46 49 124,607 21,479

 Totals 4,846 567 548 443,659 147,624

 Case Pn TC Tn TCl Tn

 1 269 6.63 .60 11.06

 2 579 5.20 1.33 3.90

 3 736 5.67 .88 6.42

 4 1,588 3.30 1.55 2.13

 5 971 3.80 1.88 2.02

 6 1,466 8.73 2.07 4.23
 7 3,610 13.98 3.08 4.54

 8 1,868 113.10 3.35 33.76
 9 2,346 57.48 5.45 10.55

 10 2,001 24.57 3.87 6.35

 11 2,726 34.98 4.28 8.17

 12 5,548 28.08 4.88 5.75

 13 7,650 39.18 6.12 6.41
 14 6,364 25.50 4.25 6.00

 15 7,844 34.93 9.17 3.81

 16 4,669 36.70 19.32 1.90
 17 28,976 62.27 7.28 8.55

 18 45,525 183.68 13.93 13.18

 19 20,369 178.60 17.92 9.97

 Totals 145,105 866.38 111.21 7.83 (average)

 N -order of matrix Pc - profile after reverse Cuthill-McKee algorithm
 P3 -bandwidth of matrix Pn -profile after new algorithm
 ,#c- bandwidth after reverse Cuthill-McKee algorithm TC-time (in seconds) for reverse Cuthill-McKee algorithm
 .(3n-bandwidth after new algorithm Tn-time (in seconds) for new algorithm
 P -profile of matrix
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 FIG. 1. Bandwidthfor 19 examples
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 FIG. 2. Profilefor 19 examples

 Table 1, the reverse Cuthill-KcKee algorithm typically generated between 10 and
 20 times as many level structures as the new algorithm. In our implementation of
 the new algorithm, however, the generation of each rooted level structure
 requires more time than for the reverse Cuthill-McKee algorithm due to the
 retention of additional leveling information utilized later in the algorithm. Sec-
 ondly, the graph is renumbered, and corresponding bandwidth computed, only
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 200

 Legend
 160

 Reverse
 Cuthill-McKee

 El New Algorithm
 = 120

 80

 E 80

 40

 FIG. 3. Execution time for 19 examples

 once. Because of these two reasons, the program implementing the new algorithm
 never required more time and, on the average, the NSRDC implementation of the
 reverse Cuthill-McKee algorithm required about 7 to 8 times as long. Finally, the
 more general level structure permits the case where the bandwidth is smaller than
 the width of any rooted level structure.

 Acknowledgments. The authors wish to thank E. H. Cuthill and G. C.
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